La corriente eléctrica

Flujo de carga eléctrica por unidad de tiempo que recorre un material

Movimientos de electrones

Se expresa en Culombios

Mucha energía del planeta es energética

Esta energía la producen las plantas energéticas del planeta

Existen distintos niveles de voltajes

A su vez simplemente algunos pueden dar una pequeña descarga, pero otros pueden matarte electrocutado

Es una de las secciones de la física que más destaca

Y a su vez, es tan extensa que aún se desconocen muchas cosas de ella

Corriente eléctrica

jueves, 19 de junio de 2014

Herramienta de la web 2.0

Creemos que el recurso que más debería ser utilizado debería ser este medio, un blog, ya que además de expresar claramente lo que se busca, se puede hacer de una manera dinámica, con el consentimiento que además de estudiar y aprender podrá ser entretenido en el aprendizaje de cualquiera que entre.

Cortocircuito

Se denomina cortocircuito al fallo en un aparato o línea eléctrica por el cual la corriente eléctrica pasa directamente del conductor activo o fase al neutro o tierra en sistemas monofásicos de corriente alterna, entre dos fases o igual al caso anterior para sistemas polifásicos, o entre polos opuestos en el caso de corriente continua. Es decir: Es un defecto de baja impedancia entre dos puntos de potencial diferente y produce arco eléctrico, esfuerzos electrodinámicos y esfuerzos térmicos.
El cortocircuito se produce normalmente por los fallos en el aislante de los conductores, cuando estos quedan sumergidos en un medio conductor como el agua o por contacto accidental entre conductores aéreos por fuertes vientos o rotura de los apoyos.
Debido a que un cortocircuito puede causar importantes daños en las instalaciones eléctricas e incluso incendios en edificios, estas instalaciones están normalmente dotadas de fusibles o interruptores magnetotérmicos a fin de proteger a las personas y los objetos.

Leyes de Kirchhoff

Las leyes de Kirchhoff son dos igualdades que se basan en la conservación de la energía y la carga en los circuitos eléctricos. Fueron descritas por primera vez en 1845 por Gustav Kirchhoff. Son ampliamente usadas en ingeniería eléctrica.
Ambas leyes de circuitos pueden derivarse directamente de las ecuaciones de Maxwell, pero Kirchhoff precedió a Maxwell y gracias a Georg Ohm su trabajo fue generalizado. Estas leyes son muy utilizadas en ingeniería eléctrica para hallar corrientes y tensiones en cualquier punto de un circuito eléctrico.

Ley de corrientes.
Esta ley también es llamada ley de nodos o primera ley de Kirchhoff y es común que se use la sigla LCK para referirse a esta ley. La ley de corrientes de Kirchhoff nos dice que:
En cualquier nodo, la suma de la corriente que entra en ese nodo es igual a la suma de la corriente que sale. De igual forma, La suma algebraica de todas las corrientes que pasan por el nodo es igual a cero. 
La ley se basa en el principio de la conservación de la carga donde la carga en couloumbs es el producto de la corriente en amperios y el tiempo en segundos.

Ley de tensiones.
Esta ley es llamada también Segunda ley de Kirchhoff, ley de lazos de Kirchhoff y es común que se use la sigla LVK para referirse a esta ley.
En toda malla la suma de todas las caídas de tensión es igual a la tensión total suministrada. De forma equivalente, En toda malla la suma algebraica de las diferencias de potencial eléctrico es igual a cero.





Redes eléctricas

Una red eléctrica es una red interconectada que tiene el propósito de suministrar electricidad desde los proveedores hasta los consumidores. Consiste de tres componentes principales, las plantas generadoras que producen electricidad de combustibles fósiles (carbón, gas natural, biomasa) o combustibles no fósiles (eólica,solar, nuclear, hidráulica); Las líneas de transmisión que llevan la electricidad de las plantas generadoras a los centros de demanda y los transformadores que reducen el voltaje para que las líneas de distribución puedan entregarle energía al consumidor final.

Circuitos eléctricos

Se denomina circuito eléctrico a una serie de elementos o componentes eléctricos o electrónicos, tales como resistencias, inductancias, condensadores, fuentes, y/o dispositivos electrónicos semiconductores, conectados eléctricamente entre sí con el propósito de generar, transportar o modificar señales electrónicas o eléctricas.

Principio de funcionamiento de un motor eléctrico

Este es un principio básico que explica cómo se origina las fuerzas en sistemas electromecánicos como los motores eléctricos. Sin embargo, la completa descripción para cada tipo de motor eléctrico depende de sus componentes y su construcción.
El principio de funcionamiento de los motores eléctricos de corriente directa o continua se basa en la repulsión que ejercen los polos magnéticos de un imán permanente cuando, de acuerdo con la Ley de Lorentz, interactúan con los polos magnéticos de un electroimán que se encuentra montado en un eje. Este electroimán se denomina “rotor” y su eje le permite girar libremente entre los polos magnéticos norte y sur del imán permanente situado dentro de la carcasa o cuerpo del motor.

Cuando la corriente eléctrica circula por la bobina de este electroimán giratorio, el campo electromagnético que se genera interactúa con el campo magnético del imán permanente. Si los polos del imán permanente y del electroimán giratorio coinciden, se produce un rechazo y un torque magnético o par de fuerza que provoca que el rotor rompa la inercia y comience a girar sobre su eje en el mismo sentido de las manecillas del reloj en unos casos, o en sentido contrario, de acuerdo con la forma que se encuentre conectada al circuito la pila o la batería.

Campo Magnético

Un campo magnético es una descripción matemática de la influencia magnética de las corrientes eléctricas y de losmateriales magnéticos. El campo magnético en cualquier punto está especificado por dos valores, la dirección y lamagnitud; de tal forma que es un campo vectorial. Específicamente, el campo magnético es un vector axial, como lo son los momentos mecánicos y los campos rotacionales. El campo magnético es más comúnmente definido en términos de la fuerza de Lorentz ejercida en cargas eléctricas. Campo magnético puede referirse a dos separados pero muy relacionados símbolos B y H.

Los campos magnéticos son producidos por cualquier carga eléctrica en movimiento y el momento magnético intrínseco de las partículas elementales asociadas con una propiedad cuántica fundamental, su espin. En larelatividad especial, campos eléctricos y magnéticos son dos aspectos interrelacionados de un objeto, llamado el tensor electromagnético. Las fuerzas magnéticas dan información sobre la carga que lleva un material a través delefecto Hall. La interacción de los campos magnéticos en dispositivos eléctricos tales como transformadores es estudiada en la disciplina de circuitos magnéticos.

Efecto Joule

Se conoce como efecto Joule al fenómeno irreversible por el cual si en un conductor circula corriente eléctrica, parte de la energía cinética de los electrones se transforma en calor1 2 debido a los choques que sufren con los átomos del material conductor por el que circulan, elevando la temperatura del mismo. El nombre es en honor a su descubridor, el físico británico James Prescott Joule
El movimiento de los electrones en un cable es desordenado, esto provoca continuos choques entre ellos y como consecuencia un aumento de la temperatura en el propio cable.

Energía eléctrica

Se denomina energía eléctrica a la forma de energía que resulta de la existencia de una diferencia de potencial entre dos puntos, lo que permite establecer una corriente eléctrica entre ambos cuando se los pone en contacto por medio de un conductor eléctrico. La energía eléctrica puede transformarse en muchas otras formas de energía, tales como la energía lumínica o luz, la energía mecánica y la energía térmica.

Potencia eléctrica

La potencia eléctrica es la relación de paso de energía de un flujo por unidad de tiempo; es decir, la cantidad deenergía entregada o absorbida por un elemento en un tiempo determinado. La unidad en el Sistema Internacional de Unidades es el vatio (watt).
Cuando una corriente eléctrica fluye en cualquier circuito, puede transferir energía al hacer un trabajo mecánico o termodinámico. Los dispositivos convierten la energía eléctrica de muchas maneras útiles, como calor, luz (lámpara incandescente), movimiento (motor eléctrico), sonido (altavoz) o procesos químicos. La electricidad se puede producir mecánica o químicamente por la generación de energía eléctrica, o también por la transformación de la luz en las células fotoeléctricas. Por último, se puede almacenar químicamente en baterías.
La energía consumida por un dispositivo eléctrico se mide en vatios-hora (Wh), o en kilovatios-hora (kWh). Normalmente las empresas que suministran energía eléctrica a la industria y los hogares, en lugar de facturar el consumo en vatios-hora, lo hacen en kilovatios-hora (kWh). La potencia en vatios (W) o kilovatios (kW) de todos los aparatos eléctricos debe figurar junto con la tensión de alimentación en una placa metálica ubicada, generalmente, en la parte trasera de dichos equipos. En los motores, esa placa se halla colocada en uno de sus costados y en el caso de las bombillas de alumbrado el dato viene impreso en el cristal o en su base.

Ley de Ohm

Circuitos eléctricos La manera más simple de conectar componentes eléctricos es disponerlos de forma lineal, uno detrás del otro. Este tipo de circuito se denomina "circuito en serie", como el que aparece a la izquierda de la ilustración. Si una de las bombillas del circuito deja de funcionar, la otra también lo hará debido a que se interrumpe el paso de corriente por el circuito. Otra manera de conectarlo sería que cada bombilla tuviera su propio suministro eléctrico, de forma totalmente independiente, y así, si una de ellas se funde, la otra puede continuar funcionando. Este circuito se denomina "circuito en paralelo", y se muestra a la derecha de la ilustración
La corriente fluye por un circuito eléctrico siguiendo varias leyes definidas. La ley básica del flujo de la corriente es la ley de Ohm, así llamada en honor a su descubridor, el físico alemán Georg Ohm. Según la ley de Ohm, la cantidad de corriente que fluye por un circuito formado por resistencias puras es directamente proporcional a la fuerza electromotriz aplicada al circuito, e inversamente proporcional a la resistencia total del circuito. Esta ley suele expresarse mediante la fórmula I = V/R, siendo I la intensidad de corriente en amperios, V la fuerza electromotriz en voltios y R la resistencia en ohmios. La ley de Ohm se aplica a todos los circuitos eléctricos, tanto a los de corriente continua (CC) como a los de corriente alterna (CA), aunque para el análisis de circuitos complejos y circuitos de CA deben emplearseprincipios adicionales que incluyen inductancias y capacitancias.
Un circuito en serie es aquél en que los dispositivos o elementos del circuito están dispuestos de tal manera que la totalidad de la corriente pasa a través de cada elemento sin división ni derivación en circuitos paralelos.
Cuando en un circuito hay dos o más resistencias en serie, la resistencia total se calcula sumando los valores de dichas resistencias. Si las resistencias están en paralelo, el valor total de la resistencia del circuito se obtiene mediante la fórmula

En un circuito en paralelo los dispositivos eléctricos, por ejemplo las lámparas incandescentes o las celdas de una batería, están dispuestos de manera que todos los polos, electrodos y terminales positivos (+) se unen en un único conductor, y todos los negativos (-) en otro, de forma que cada unidad se encuentra, en realidad, en una derivación paralela. El valor de dos resistencias iguales en paralelo es igual a la mitad del valor de las resistencias componentes y, en cada caso, el valor de las resistencias en paralelo es menor que el valor de la más pequeña de cada una de las resistencias implicadas. En los circuitos de CA, o circuitos de corrientes variables, deben considerarse otros componentes del circuito además de la resistencia.

Fuerza electromotriz

La fuerza electromotriz(FEM) es toda causa capaz de mantener una diferencia de potencial entre dos puntos de un circuito abierto o de producir una corriente eléctrica en un circuito cerrado. Es una característica de cada generador eléctrico. Con carácter general puede explicarse por la existencia de un campo electromotor Se define como el trabajo que el generador realiza para pasar por su interior la unidad de carga positiva del polo negativo al positivo, dividido por el valor en Culombios de dicha carga.
Esto se justifica en el hecho de que cuando circula esta unidad de carga por el circuito exterior al generador, desde el polo positivo al negativo, es necesario realizar un trabajo o consumo de energía (mecánica, química, etcétera) para transportarla por el interior desde un punto de menor potencial (el polo negativo al cual llega) a otro de mayor potencial (el polo positivo por el cual sale).

Dependencia entre la resistencia y la temperatura

Sabemos que la resistencia en conductores metálicos es producto de choques de los portadores de cargas con los obstáculos que encuentran en su camino. Al chocar pierden velocidad y energía pero el campo eléctrico les hace recuperar esa velocidad. Esa energía del campo, gastada en lograr que los portadores de carga recuperen su energía hace que el conductor aumente su temperatura.
Si llamamos R1 a la resistencia del conductor a la temperatura T1 r R2 la resistencia de la temperatura T2, se tendrá que la variación de la resistencia R2 - R1 se debe a la relación de temperatura. Ésta variación de resistencia, producto de la variación de temperatura es proporcional a la variación inicial, pudiéndose escribir:
R2 - R1 =
. R1 (T2 - T1)

Si llamamos "t a la variación de temperatura podemos escribir:
R2 - R1 =
. R1"t

Donde:
R2: Resistencia final
R1: Resistencia inicial
: coeficiente de temperatura (ºC-1)

T2: Temperatura final
T1: Temperatura inicial
Tabla de valores de coeficientes de temperatura:

Material
Coeficiente (ºC-1)
Aluminio
4 . 10-3
Cobre
3,9 .10-3
Plata
3,8 .10-3
Oro
3,4 .10-3
Tungsteno
4,6 . 10-3
Platino
3,9 . 10-3
Constatán
2 . 10-3
Hierro
6,5 . 10-3
Nicromio
4 . 10-3
Mercurio
8,9 . 10-3
Níquel
6 . 10-3
Zinc
3,7 . 10-3

Factores de los cuales depende la resistencia de un conductor

principalmente el material del que esta hecho el conductor. 
el largo de él y el diámetro que posee la ecuación para resolverlo es la siguiente 

R= L ( l/A) 

donde: 
R= resistencia (ohms) 
L= largo del conductor (metros) 
l= resistencia especifica (en ohms por milímetro cuadrado partido metros) para el cobre 0.018 y el aluminio 0.026 que son los mas utilizados. 
A=área de superficie (milímetros cuadrados)

Resistencia Eléctrica

Se le denomina resistencia eléctrica a la igualdad de oposición que tienen los electrones al desplazarse a través de un conductor. La unidad de resistencia en el Sistema Internacional es el ohmio, que se representa con la letra griega omega (Ω), en honor al físico alemán George Ohm, quien descubrió el principio que ahora lleva su nombre.


Amperímetro y Voltímetro

Un amperímetro es un instrumento que sirve para medir la intensidad de corriente que está circulando por un circuito eléctrico.
Los amperímetros, en esencia, están constituidos por un galvanómetro cuya escala ha sido graduada en amperios.

El aparato descrito corresponde al diseño original, ya que en la actualidad los amperímetros utilizan un conversor analógico/digital para la medida de la caída de tensión sobre un resistor por el que circula la corriente a medir. La lectura del conversor es leída por un microprocesador que realiza los cálculos para presentar en un display numérico el valor de la corriente circulante.

Un Voltímetro es un instrumento que sirve para medir la diferencia de potencial entre dos puntos de un circuito eléctrico cerrado pero a la vez abiertos en los polos.

Conductividad eléctrica

La conductividad eléctrica es la capacidad de un cuerpo de permitir el paso de la corriente eléctrica a través de sí. También es definida como la propiedad natural característica de cada cuerpo que representa la facilidad con la que los electrones (y huecos en el caso de los semiconductores) pueden pasar por él. Varía con la temperatura. Es una de las características más importantes de los materiales.

Conductividad en medios líquidos
La conductividad en medios líquidos (Disolución) está relacionada con la presencia de sales en solución, cuya disociación genera iones positivos y negativos capaces de transportar la energía eléctrica si se somete el líquido a un campo eléctrico. Estos conductores iónicos se denominan electrolitos o conductores electrolíticos.
Las determinaciones de la conductividad reciben el nombre de determinaciones conductométricas y tienen muchas aplicaciones como, por ejemplo:
·         En la electrólisis, ya que el consumo de energía eléctrica en este proceso depende en gran medida de ella.
·         En los estudios de laboratorio para determinar el contenido de sal de varias soluciones durante la evaporación del agua (por ejemplo en el agua de calderas o en la producción de leche condensada.
·         En el estudio de las basicidades de los ácidos, puesto que pueden ser determinadas por mediciones de la conductividad.
·         Para determinar las solubilidades de electrólitos escasamente solubles y para hallar concentraciones de electrólitos en soluciones por titulación.
La conductividad eléctrica se utiliza para determinar la salinidad (contenido de sales) de suelos y substratos de cultivo, ya que se disuelven éstos en agua y se mide la conductividad del medio líquido resultante. Suele estar referenciada a 25 °C y el valor obtenido debe corregirse en función de la temperatura. Coexisten muchas unidades de expresión de la conductividad para este fin, aunque las más utilizadas son dS/m (deciSiemens por metro), mmhos/cm (milimhos por centímetro) y según los organismos de normalización europeos mS/m (miliSiemens por metro). El contenido de sales de un suelo o substrato también se puede expresar por la resistividad (se solía expresar así en Francia antes de la aplicación de las normas INEN).

Conductividad en medios sólidos
Según la teoría de bandas de energía en sólidos cristalinos (véase semiconductor), son materiales conductores aquellos en los que las bandas de valencia y conducción se superponen, formándose una nube de electrones libres causante de la corriente al someter al material a un campo eléctrico. Estos medios conductores se denominan conductores eléctricos.
La Comisión Electrotécnica Internacional definió como patrón de la conductividad eléctrica:
Un hilo de cobre de 1 metro de longitud y un gramo de masa, que da una resistencia de 0,15388 O a 20 °C al que asignó una conductividad eléctrica de 100% IACS (International Annealed Cooper Standard, Estándar Internacional de Cobre no Aleado). A toda aleación de cobre con una conductividad mayor que 100% IACS se le denomina de alta conductividad (H.C. por sus siglas inglesas).

Corriente alterna

Se denomina corriente alterna (abreviada CA en español y AC en inglés, de Altern Current) a la corriente eléctrica en la que la magnitud y dirección varían cíclicamente. La forma de onda de la corriente alterna más comúnmente utilizada es la de una onda sinoidal (figura 1), puesto que se consigue una transmisión más eficiente de la energía. Sin embargo, en ciertas aplicaciones se utilizan otras formas de onda periódicas, tales como la triangular o la cuadrada.

Utilizada genéricamente, la CA se refiere a la forma en la cual la electricidad llega a los hogares y a las empresas. Sin embargo, las señales de audio y de radio transmitidas por los cables eléctricos, son también ejemplos de corriente alterna. En estos usos, el fin más importante suele ser la transmisión y recuperación de la información codificada (o modulada) sobre la señal de la CA.

Corriente continua

La corriente continua (CC en español, en inglés DC, de Direct Current) es el flujo continuo de electrones a través de un conductor entre dos puntos de distinto potencial. A diferencia de la corriente alterna (CA en español, AC en inglés), en la corriente continua las cargas eléctricas circulan siempre en la misma dirección (es decir, los terminales de mayor y de menor potencial son siempre los mismos). Aunque comúnmente se identifica la corriente continúa con la corriente constante (por ejemplo la suministrada por una batería), es continua toda corriente que mantenga siempre la misma polaridad.

Intensidad de corriente

Se denomina intensidad de corriente eléctrica a la carga eléctrica que pasa a través de una sección del conductor en la unidad de tiempo. En el Sistema Internacional de Unidades se expresa en C·s-1 (culombios partido por segundo), unidad que se denomina amperio.
Si la intensidad es constante en el tiempo se dice que la corriente es continua; en caso contrario, se llama variable. Si no se produce almacenamiento ni disminución de carga en ningún punto del conductor, la corriente es estacionaria.

Se mide con un galvanómetro que, calibrado en amperios, se llama amperímetro y en el circuito se coloca en serie con el conductor cuya intensidad se desea medir.

Corriente eléctrica

La corriente eléctrica es el flujo de portadores de carga eléctrica, normalmente a través de un cable metálico o cualquier otro conductor eléctrico, debido a la diferencia de potencial creada por un generador de corriente.Históricamente, la corriente eléctrica se definió como un flujo de cargas positivas y se fijó el sentido convencional de circulación de la corriente como un flujo de cargas desde el polo positivo al negativo. Sin embargo posteriormente se observó, gracias al efecto Hall, que en los metales los portadores de carga son negativas, estos son los electrones, los cuales fluyen en sentido contrario al convencional.
Una corriente eléctrica, puesto que se trata de un movimiento de cargas, produce un campo magnético.
En el Sistema Internacional de Unidades, la unidad de medida de la intensidad de corriente eléctrica es el amperio, representado con el símbolo A.
El aparato utilizado para medir corrientes eléctricas pequeñas es el galvanómetro.
Cuando la intensidad a medir supera el límite de los galvanómetros se utiliza el amperímetro.

Fórmula de la corriente eléctrica